资料下载
Data downloadTo solve undiscernible freshness changes of printed functional surimi while maintaining printed shape, 4D printable color-changing material were prepared. Firstly, based on results of printing properties and freshkeeping of Ca2+-NS-L-surimi, it showed better printing effects (enhanced mechanical strength) and good preservation (inhibition of amino acids decomposition, bacterial growth). However, freshness changes of printed Ca2+-NS-L-surimi were not distinguished directly. To avoid that, 4D printable color-changing material— anthocyanin-hydroxypropyl methyl cellulose-xanthan gum-carrageenan (AHXK) was prepared for indicating freshness through discoloration. Printing results showed AHX with 5 % K had the most suitable mechanical strength (appropriate gel strength, texture, rheology) for printing. Based on that, AHXK had stable color (ΔE fluctuation <5) and was sensitive to pH and ammonia (obvious discoloration; ΔE > 10). Actual freshness monitoring results (co-printing of AHXK-surimi) exhibited significant discolorations, especially for HXK with 0.75 % A. It became green during refrigeration of 3–5 d (keeping fresh, ΔE < 4), brighter green at 7 d (decreased freshness, ΔE > 6), turned yellow at 9 d (spoilage, ΔE > 16), which were distinguished significantly with naked eyes rather than traditional freshness determining. In conclusion, printed AHXK-functional surimi exhibited good printing, preservation and nondestructive freshness monitoring, facilitating application of 3D printed functional surimi.